Function approximation on triangular grids: some numerical results using adaptive techniques

نویسندگان

  • Cristina Manzi
  • Francesca Rapetti
  • Luca Formaggia
چکیده

Applications of mesh adaption techniques could be found in the numerical solution of PDE’s or in the optimal triangulation of surfaces for shape representation or graphic display. The scope of this work is to verify through numerical experiments the effectiveness of some algorithms for the control of the L∞ error norm for piece–wise linear approximation on 2D unstructured triangular meshes. The analysis could be extended to parametric surfaces and to the 3D case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

This paper presents a numerical entropy production (NEP) scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volumemethod. Numerical simulations show thatNEP is successful to be a refinement/coarsening indicator in the adaptive...

متن کامل

hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems

We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, fo...

متن کامل

A Solution Adaptive Grid Method for Calculation of High Speed Flows around Blunt Body Configurations

Extension of a solution adaptive grid method to hypersonic flows is presented. Fully unstructured triangular grids are generated in an automatic manner and further refined by adapting to the flow features. Two-dimensional inviscid flow is simulated by numerical solution of Euler equations. A cell-centered finitevolume scheme is used and the steady state solution is obtained using an explicit mu...

متن کامل

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

The hp-multigrid method applied to hp-adaptive refinement of triangular grids

Recently the hp version of the finite element method, in which adaptivity occurs in both the size, h, of the elements and in the order, p, of the approximating piecewise polynomials, has received increasing attention. It is desirable to combine this optimal order discretization method with an optimal order algebraic solution method, such as multigrid. An intriguing notion is to use the values o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009